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Abstract Electrostatic interactions between biological

molecules are crucially influenced by their aqueous envi-

ronment, with efficient and accurate models of solvent

effects required for robust molecular design strategies.

Continuum electrostatic models provide a reasonable bal-

ance between computational efficiency and accurate system

representation. In this article, I review two specific molecular

design strategies, charge optimization and combinatorial

design, paying particular attention to how the continuum

framework (also briefly described herein) successfully

enables both theoretical insights and molecular designs and

presents a challenge in design applications due to what I call

‘‘the isostericity constraint.’’ Efforts to work around the

isostericity constraint and other challenges are discussed.

Additionally, particular emphasis is placed on using such

models in the rational design of particularly tight, specific, or

promiscuous interactions, in keeping with the increased

sophistication of current molecular design applications.

Keywords Continuum electrostatics � Charge

optimization � Combinatorial design � Specificity �
Promiscuity � Implicit solvation

1 Introduction

Electrostatic interactions play a crucial role in mediating

biomolecular recognition. Unlike short-range, shape-depen-

dent dispersion forces or nonspecific ‘‘hydrophobic’’ inter-

actions, electrostatic interactions have the flexibility to be both

nonspecific and highly specific, due to their generating both

long-range and short-range effects. Indeed, examples of

electrostatic-mediated biomolecular interactions are far too

numerous to describe here, but typical natural examples

include electrostatic features that contribute to increased

affinity [1–3], specificity [4–6], and promiscuity [7, 8]. In

design applications, electrostatics are an effective way to

influence molecular recognition, as specific patterns of

hydrophobic and charged groups can be designed to exploit

similarities and differences among desired and undesired

potential binding partners [9]. Moreover, a single residue or

functional group modification can greatly alter affinity

[10–12], specificity [13, 14], or pH-dependent behavior [15].

The long-range nature of electrostatics is important for both

thermodynamic affinity enhancements [16] and kinetic cap-

turing, orienting, association, and (arguably) steering of

potential partners [17–22].

Accordingly, great efforts have been made to understand

electrostatic interactions in various biological contexts. In

the case of protein systems, studies reveal that although the

specific role of electrostatics in binding can vary among

complexes [23], potentially playing a larger role for

smaller interfaces [23, 24], polar residues tend to be more

conserved in interfacial ‘‘hot spots’’ [25], suggesting their

crucial roles in mediating recognition. Indeed, Coulombic

electrostatic interactions are ‘‘optimized’’ in natural pro-

teins and their complexes, in that they are significantly

more favorable than those in random ‘‘decoys’’ [26], with

the favorability likely stemming from orientation-depen-

dent electrostatic features rather than overall monopoles

(the total charges on species) [27]. Optimization of Cou-

lombic interactions explains why binding between known

partners is nearly always weakened in electrolytic solution,

in which such interactions are screened (i.e., dampened) by

the counterions in solution [28].
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Ironically, despite the importance of electrostatics in

mediating recognition, they often contribute unfavorably

overall to molecular folding and binding processes [23, 26,

29]. This idea may seem strange, as the simple adage that

‘‘opposites attract’’ can easily be satisfied through posi-

tively and negatively charged groups within the system;

however, the reason for this phenomenon is that biomo-

lecular interactions often occur in the aqueous phase. A

biomolecule pays a large opportunity cost upon folding or

binding, as it must give up favorable interactions with polar

water molecules, becoming partially desolvated, to interact

with anything else.

Unfortunately, solvation, which confounds the otherwise

intuitive nature of electrostatics, is also difficult to quantita-

tively model. As an example, significant efforts to model the

energetic contributions of salt bridges (i.e., the interaction

between oppositely charged amino acid side chains) within

proteins and their complexes show that they may contribute

either favorably or unfavorably toward folding or binding

[30–36], but throughout the years, it remains unclear how

robust certain results are to the models used [37–41]. Even

qualitative conclusions can depend crucially on the balance

between desolvation and interaction energetics. The high

interest in the accurate modeling of salt bridges over multiple

decades demonstrates both the importance of biomolecular

electrostatic interactions and the challenges in their quantita-

tive modeling.

In this paper, I focus on one class of widely used elec-

trostatic models—the continuum models—and describe

their use in biomolecular and small molecule design. I

review two specific design techniques that incorporate

continuum models—electrostatic charge optimization and

combinatorial molecular design—with the emphasis being

on methodology rather than on applications. Section 2

provides a very brief overview of continuum electrostatic

theory. Section 3 describes electrostatic charge optimiza-

tion theory, its successful applications toward both analysis

and design, and open problems within the field. Finally,

Sect. 4 describes the incorporation of continuum electro-

static models into a combinatorial design framework and

the challenges therein. As a whole, my goal is to introduce

the reader to both the strengths and challenges of using a

continuum model as part of a molecular design strategy.

2 Background: continuum electrostatic models

2.1 Overview

The modeling of electrostatic interactions in biological mac-

romolecular systems has inherent challenges. First, the ‘‘real’’

electrostatic properties of a molecule depend on the constant

adjustment of and uncertainty in electron density within all

species and are best modeled through quantum mechanical

approaches. Such computation is currently prohibitively

expensive, especially when the dynamics of macromolecular

processes occurring in solution are considered. Many models

therefore approximate true charge distributions with fixed

point charges at atom centers. The continuum model, which

motivates this work and is described in detail below, implicitly

accounts for solute charge polarization among other things,

through assuming that the fixed point charges lie within a

polarizable medium within the biological molecules. More

explicit, ‘‘microscopic’’ models allow for charge polarization

through modeling polarizable dipoles, drude oscillators,

fluctuating charges, self-consistent multipoles, and other

approaches, and are addressed within multiple reviews and

recent work [42–50]. Despite much progress, the accurate yet

efficient representation of biomolecular charge distributions

remains a challenge.

The other, related major challenge in modeling biomo-

lecular electrostatics is accounting for electrostatic inter-

actions with the solvent. Two major approaches are

generally used. The first approach, explicit solvent mod-

eling, represents individual water molecules explicitly. The

solvent polarization is captured through rearrangements

and reorientations of individual water molecules as they

interact with the biomolecular solutes via time-dependent

molecular dynamics simulations. Assuming a point charge

model of charge distributions, Coulomb’s Law can be used

to calculate the potential energy U resulting from each pair

of charges q1 and q2, separated by distance r:

U ¼ q1q2

4pe0r
; ðe0 is the permittivity of free space constant;

8:854� 10�12C=ðVmÞÞ ð1Þ

Summing over all pairs of charges in the system can be

expensive; distance cutoffs are sometimes used to increase the

efficiency. Due to the long-range nature of electrostatics, such

cutoffs may lead to inaccurate results [51, 52], though

improved cutoff schemes, such as those that gradually drive

the potential energy to zero as the cutoff distance is

approached rather than abruptly cutting it off, can achieve

better accuracy [53]. Many methods exist to treat long-range

electrostatics within explicit solvent models; the most

common assume periodic boundary conditions for the

simulated system and employ numerical strategies such as

Ewald summation, fast multipole methods, or others to

facilitate computation [54–57]. Explicit solvent models are

widely used for quantifying thermodynamic properties of

biological systems and have been reviewed throughout the

years [45, 58, 59]. They have the added advantage of also

accounting for nonpolar solvent effects, such as dispersion

interactions, on an atomistic level. Nevertheless, they are

generally too computationally expensive for molecular design

purposes, as in such cases, one wishes to compare
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thermodynamic properties of a huge number of potential

designs. With each potential design requiring extensive

simulation in which the explicit solvent degrees of freedom

are adequately sampled, such an application is currently

infeasible in general.

To enable efficient modeling of solvent for use in

design, therefore, alternative models are needed. These

models are implicit models, which account for the effects

of solvent polarization and reorganization without explic-

itly modeling actual solvent molecules. Such models allow

for more rapid evaluation of electrostatic properties and

have been shown to perform similarly to explicit models in

identifying minimum-energy conformations of biological

molecules [60] and quantifying solvation energies [61].

Nevertheless, specific implicit models have noted weak-

nesses, including energetic biases toward secondary struc-

tural elements [62], inaccurate conformational sampling

due to erroneous quantification of salt bridge effects

[63–66], and the inability to account for effects resulting

from discrete water molecules [67, 68]. This paper focuses

on only the electrostatic effects of solvent, although it is

important to note that implicit electrostatic solvent models

are generally used in conjunction with other implicit

models to account for crucial nonpolar solvent effects, such

as cavitation and dispersion, to obtain ‘‘total’’ solvation

energies. Such nonpolar models have also been an active

area of research over the past decade [69–73].

One major class of implicit electrostatic models, ‘‘contin-

uum electrostatic’’ models, treats the solvent as a polarizable,

macroscopic continuum (i.e., a dielectric medium). Such

models motivate the rest of this work. Continuum models have

seen enormous usage in the treatment of biomolecular systems

over multiple decades, with far too many success stories to

describe here. As my goal is to discuss continuum electrostatic

models within a molecular design framework, I will only

briefly summarize the theory behind continuum models and

provide the reader here with representative (but not all)

reviews over the previous 15 years for more detail on theory

and applications [59, 74–81]. The vast number of reviews

speaks to their great utility in representing biomolecular sys-

tems. They provide a balance between accuracy and compu-

tational expense, making them appropriate for use in

molecular design applications.

2.2 Theoretical framework and the Poisson–Boltzmann

equation

In continuum electrostatic models, the solvent is represented

as a high-dielectric, polarizable continuum and the biological

solutes are represented as lower-dielectric cavities with

embedded charge distributions (Fig. 1). In aqueous solvent,

the solvent dielectric constant (which quantifies the degree of

polarizability) is roughly 80, the macroscopic dielectric

constant of water, but the ‘‘best’’ value of the lower dielectric

constant of the biomolecule has been sought after for multiple

decades [82, 83], with it likely being system dependent

[84–86], given its inherent crudeness as a physical model [45];

values typically range from 2 to 40, depending on whether the

dielectric constant is to capture only electronic polarization or

more substantial spatial rearrangements or reorientation of

charges. The dielectric solvent model assumes a linear

response of the solvent to the field generated by the solute

charge distribution; the ‘‘reaction field’’ generated by the

solvent to interact with a given solute charge is proportional to

the solute charge’s magnitude. The linear response model is

valid for small to moderate inducing electric fields for a

re-organizing solvent such as water; once the field is strong

enough, the response due to solvent reorganization saturates

[87].

Given a charge distribution qðr~Þ and a spatially varying

dielectric constant eðr~Þ (i.e., a solvent region and a solute

region), the electrostatic potential everywhere in space

(/ðr~Þ) can be obtained by solving the Poisson equation:

�r � ðeðr~Þr/ðr~ÞÞ ¼ qðr~Þ
e0

ð2Þ

The presence of monovalent, mobile ions within solvent

is often implicitly incorporated into the model, as they are

present in biological systems and screen electrostatic

interactions. Through Debye–Huckel theory [88], the

Poisson equation can be extended to implicitly account

for the reorganization of monovalent, mobile ions within

the solvent, resulting in the (nonlinear) Poisson–Boltzmann

equation (PBE):

�r � ðeðr~Þr/ðr~ÞÞ ¼ qðr~Þ
e0

� 2qscs

e0

sinhðbqs/ðr~ÞÞ ð3Þ

where cs is the bulk salt concentration (and is nonzero only

in regions accessible to ions), qs is the unit charge

(1.6 9 10-19 C in SI units), and b is the reciprocal of the

Boltzmann constant multiplied by the temperature. While

powerful, the implicit, mean-field treatment of mobile ions

described by the PBE is unable to capture their fluctuations

ε<80
ε=80

+

+

+−

− −
+

Fig. 1 Schematic showing a biological molecule (light gray) within

solvent (dark gray) as modeled via the continuum framework
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or correlations [81, 89] and cannot account for the finite

volumes of each type of ion within solution [81, 90].

Assuming a small magnitude for potential (valid for

small-magnitude charge distributions), the linearized

approximation to the PBE is commonly used:

�r � ðeðr~Þr/ðr~ÞÞ ¼ qðr~Þ
e0

� eðr~Þj2/ðr~Þ ð4Þ

j2 ¼ 2b
e0ew

csq
2
s ð5Þ

Here, ew is the dielectric constant of water and j is nonzero

only in regions accessible by ions. Like the Poisson equation,

the linearized Poisson–Boltzmann equation (LPBE) assumes

linear response, although now, the reaction field is generated

by both solvent polarization and mobile ion rearrangement.

Linearity provides mathematical conveniences such as

reciprocity (the potential at point i due to a source at point

j equals the potential at j due to i) and superposition (the

potential is a linear sum of those generated by individual

sources) [91, 92].

The PBE and/or the linearized Poisson–Boltzmann

equation can be solved numerically using well-established

finite difference [93–95], boundary element [96–98], or

finite element [99–101] techniques (reviewed elsewhere

[102, 103]). Its solution provides the potential at desired

locations. Specifically, when the linearized Poisson–

Boltzmann equation (LPBE) is solved, linearity can be

exploited such that one obtains, through superposition, the

total electrostatic energy of the system by summing over

the product of potentials and charges qi at each location:

G ¼
X

i

1

2
qi/i ð6Þ

The overall factor of � results from two different

reasons [104]. First, it prevents double counting energetic

contributions resulting from a charge feeling the potential

generated by another charge (which, by reciprocity, is

equal for a pair of interacting charges). Second, it accounts

for the fact that the cost of generating a reaction field in

response to a given charge is one-half of the resulting

interaction energy with that charge [42]. Because this cost

is in part an entropic contribution of reorienting solvent,

the resulting energy in Eq. 6 is a free energy.

2.3 Generalized Born and other approaches

While less computationally demanding than explicit sol-

vent simulation, the numerical solution of the LPBE is still

computationally expensive, especially when high levels of

quantitative accuracy are desired. Therefore, more efficient

continuum models exist. The most common alternative is

the generalized Born (GB) class of methods (reviewed in

Ref. [105]). GB methods originate in the fact that the

Poisson equation can be solved analytically for the simple

case of a low-dielectric (esolute) sphere of radius a with a

point charge q located at the center within a high-dielectric

(ew) medium, yielding a closed-form expression for its

solvation energy, modeled as the free energy change upon

transferring it from low- to high-dielectric media:

DGsolv ¼ �
kq2

2a

1

esolute

� 1

ew

� �
ð7Þ

where k is a constant to achieve appropriate units.

Likewise, the difference in interaction energy of two

isolated spheres i and j upon solvation can be analytically

calculated in the limit where their radii are much smaller

than their separation distance, rij:

DGinter ¼
kqiqj

rij

1

ew
� 1

esolute

� �
ð8Þ

Of course, biological molecules are nonspherical and have

many, closely interacting charges, so these equations are

inapplicable as written, although GB methods approximate

solvation energies using analytical expressions based on the

above equations. Each atom has an ‘‘effective Born radius,’’

equal to the radius that a hypothetical spherical cavity

containing only that atomic charge would have in order to

generate the same self-polarization energy (i.e., the solvation

energy due to that one charge interacting with its own solvent

reaction field). The effective Born radius depends on the

shape of the entire molecule and can be ‘‘rigorously’’

determined by charging up only one atom center in a

biomolecule and calculating the solvent reaction potential via

numerical solution of the Poisson equation, but this

eliminates increased efficiency. Rather, effective Born radii

are estimated by other means. Because the accuracy of the

GB method depends crucially on the effective Born radii

[106], rapid but accurate estimates are necessary and have

been a huge area of research spanning multiple decades [105,

107–116].

Even if one were to obtain ‘‘exact’’ Born radii to eval-

uate self-polarization energies upon solvation via Eq. 7,

one still needs to evaluate the change in interaction ener-

gies between each pair of charges upon solvation. By

‘‘interpolating’’ between Eqs. 7 and 8 above, Still et al.

[117] devised the following, surprisingly accurate formula

for calculating solvent reaction field energies, double-

summing over all pairs of charges i C j:

DGsolv ¼
X

i� j

kqiqjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

ij þ aiaj exp
�r2

ij

4aiaj

r 1

ew
� 1

esolute

� �
ð9Þ

Equation 9 reduces to Eq. 7 when r = 0 and to Eq. 8

when r � ai and aj. Active efforts to refine this
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interpolation exist [106, 118]. The GB-based methods are

widely used as more efficient alternatives to solving the

LPBE, and certain implementations have closely reproduced

LPBE results [119]. However, common implementations may

systematically underestimate self-polarization energies [120],

may generate abnormally large fluctuations from native

protein structure in simulation [121], and may incorrectly

capture energetic breakdowns of residue-based contributions

toward macromolecular binding [104], in addition to having

other limitations of continuum models noted previously in this

section. Thus, due to its relative generality when compared to

more variable GB-based methods, rigorous solution of the

LPBE is often considered the benchmark of continuum

models [68, 106].

As part of their development, GB-based models have been

extended to implicitly incorporate salt effects [122, 123]. In

addition to Poisson- and GB-based methods, other continuum

electrostatic models exist and are often rooted in PBE or GB

models. As nonexhaustive examples, recent work has used the

surface-based GB framework [124] as a starting point to

approximate solvation energies without the need for obtaining

effective Born radii [125, 126]. Closed-form, analytical

approximations to the Poisson equation have been developed

with the potential to be applied to arbitrarily shaped biological

molecules [127, 128]. A variation in the PBE that explicitly

models solvent dipoles has also been developed [129]. As a

final example, ‘‘nonlocal’’ continuum models, in which the

solvent reaction field at a point in space is also a function

of nearby electric fields rather than only of the field at the

given point (which is the assumption of the traditional Pois-

son equation), have been under development and analysis

[130–132].

In summary, the primary assumption underlying contin-

uum models is that solvent (and solute) polarization can be

treated at the bulk level, without microscopic-level details.

The effects of desolvation and the dampening of solute

interactions by solvent are incorporated into the model but at

far less computational expense than explicit simulation. As a

result, continuum models have seen wide use in the analysis of

biomolecular interactions. Nevertheless, the computational

expense required for a continuum model still affords some

challenges in design applications using charge optimization

and combinatorial approaches, as described below.

3 Electrostatic charge optimization as a guide

for design

3.1 Overview and theoretical framework

The continuum models introduced above allow for quantifi-

cation of the electrostatic component of binding between

biological molecules in aqueous phase. In a design application

where one seeks to alter an existing molecule to change its

binding affinity or specificity to potential targets in solution,

one may wish not only to quantify binding, but also to evaluate

the existing electrostatics relative to what ‘‘could be,’’ if the

molecule were optimally suited for the design goal. The

method of charge optimization, first introduced by Lee,

Kangas, and Tidor [133, 134], quantifies this spirit. Electro-

static charge optimization determines a provably optimal

charge distribution for a molecule (referred to hereafter as the

‘‘ligand’’) of a given shape that will maximize affinity toward

the desired target (termed the ‘‘receptor’’). While this charge

distribution is hypothetical, as it may not be achievable by a

chemically possible molecule, the optimal charge distribution

can be compared to the ligand’s existing charge distribution to

identify molecular regions that can be altered to more closely

approximate optimality.

The method relies on the linear response assumption above,

such that the solvent reaction field potential generated by a

charge is directly proportional to the charge’s magnitude. As a

result, the solvation energy of a single charge qi is quadratic in

the charge magnitude, and the interaction energy of one

charge qi with the reaction field generated by another (qj) is

proportional to the product of the two charge magnitudes, as is

its direct Coulombic interaction with qj as well. Thus, Eq. 6

above can be written:

G ¼
X

i

1

2
qi/i ¼

X

i

1

2
qiciiqi þ

X

j

X

i

1

2
qicijqj ¼ qTMq

ð10Þ

where q is a vector representing the charge distribution of

the system, often expressed with each element corre-

sponding to an atom-centered point charge. M is a sym-

metric matrix whose elements are the proportionality

constants cij above (the factor of � is folded into the matrix

M here). Specifically, Mij is (one-half) the potential at atom

center i due to the Coulombic and reaction field potentials

created by a unit charge at atom center j.

For a binding reaction, the change in free energy is the

difference in free energy between the bound and unbound

states:

DGelec ¼ qTðMbound �MunboundÞq ¼ qTðMdiffÞq ð11Þ

We now assume rigid binding: Neither partner

undergoes conformational rearrangement upon binding.

Under this assumption, the Coulombic contributions within

each binding partner cancel between the bound and

unbound states, leaving only the reaction field piece in

Mdiff for charges within the same partner. We split q into

n- and m-dimensional subvectors qL and qR, representing

the ligand and receptor charge distributions, and we also

subdivide the (n ? m)x(n ? m)-dimensional unit-charge

potential difference matrix, Mdiff, into submatrices:
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DGelec ¼ qTðMdiffÞq ¼ qT
L qT

R

� � L C
2

CT

2
R

� �
qL

qR

� �
ð12Þ

¼ qT
LLqL þ qT

L CqR þ qT
RRqR ð13Þ

The first term in Eq. 13 involves charges on only the

ligand and represents the ligand desolvation penalty—that

is, the energetic penalty to replace a high-dielectric solvent

with a low-dielectric cavity in the shape of the receptor.

L is an nxn matrix whose ijth element equals one-half the

reaction field potential at charge center i due to a unit

charge at charge center j (the Coulombic portion has

canceled out). Likewise, the last term involves only

charges on the receptor and represents the receptor

desolvation penalty. The middle term involves charges on

both the ligand and receptor and accounts for their solvent-

screened Coulombic interaction. These three terms are

pictorially represented in Fig. 2.

The rigid binding assumption guarantees that L and

R are both positive semi-definite for systems of biological

interest because under this assumption, the binding process

is equivalent to replacing high-dielectric solvent with a

low-dielectric cavity in the shape of the binding partner and

then allowing charges on each partner to interact. A charge

distribution will interact more favorably with a higher

dielectric than with a lower one, and thus, replacing high-

dielectric solvent with a lower-dielectric region will be

unfavorable (or neutral for a completely uncharged binding

partner) [135].

Charge optimization exploits the fact that these matrices

are positive semi-definite. Graphically, the electrostatic

binding free energy as a function of either qL or qR is an

upward-facing paraboloid of dimension n or m, respec-

tively. Therefore, there exists a provable minimum as a

function of either—a ligand charge distribution that mini-

mizes binding free energy toward the receptor, and vice

versa. This minimum may not be unique [135] as a

paraboloid may be ‘‘flat’’ along at least one dimension. To

find an optimal charge distribution, we differentiate Eq. 13

with respect to either qL or qR and set the resulting

expression to zero. For example, the expression for the

optimal ligand charge distribution is as follows:

qL;opt ¼ �
1

2
L�1CqR ð14Þ

qL,opt is the set of ligand point charges that would bind

more tightly to the target than any other set of point

charges at these locations on an identically shaped ligand.

Conceptually, such an optimum exists in a solvated system

because a ligand with charge magnitudes that are too high

would interact too much with solvent in the unbound state,

while a ligand with charge magnitudes that are too low

would not interact with the receptor enough in the bound

state (Fig. 3). The optimal charge distribution represents

the ‘‘sweet spot’’ where favorable interactions between

ligand and target optimally overcome the unfavorable

ligand desolvation penalty.

To compute qL,opt, one must compute the inverse of the

L matrix. Generally, L is explicitly calculated and then

inverted. Computation of L scales as n, the number of

ligand atoms (it requires 2n potential calculations when

using the LPBE described above or n calculations of Born

radii when using GB-based methods). One also must

compute the C*qr vector product, which requires one

potential calculation. Constraints can be enforced on the

optimal charge distribution via Lagrange multipliers and

other methods such that the overall monopole equals a

specified integer or individual charges are constrained

within a given range.

3.2 Applications in analysis and design

After initial development using simple model geometries

[133, 134, 136], electrostatic charge optimization has been

applied to many biological systems, both to analyze

existing interactions and as a design strategy, to suggest

changes to alter the affinity. One of the first analyses

showed that the protein barnase is electrostatically close to

its hypothetical optimum for tight binding toward its nat-

ural partner barstar [137, 138], suggesting that a natural

molecule that strongly binds to another may mimic this

hypothetical optimum as a consequence of evolution.

Another early analysis by Sulea et al. evaluated the opti-

mality of metal ions in binding sites [139]. Because only

one charge was being optimized, the one-dimensional free

energy parabola could be directly visualized and the opti-

mality of an intermediate value could be explicitly seen.

For example, the authors confirmed that the monovalent

K? ion is optimal for binding to the 18-crown-6 ether and

that neutral or ?2 species of similar radii would be sig-

nificantly worse.

More complex analyses have been since undertaken.

Several small molecule ligands have been evaluated in

comparison with their optimal counterparts for binding

their respective targets, including kinase inhibitors [140,

141], HIV-1 reverse transcriptase inhibitors [142], and

substrates for E. coli glutaminyl tRNA synthetase [143].

Such analyses provide general insight into the electrostatic

determinants of tight binding that can be indirectly applied

to design novel inhibitors. In multiple cases, it was found

that key hydrogen-bonding interactions across the interface

are nearly optimal [141, 142], suggesting that electrostatics

play a critical role in the recognition of targets and that

optimality can be approached within the constraints of

chemical space. Charge optimization can also help explain
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why target mutations can lead to decreased affinity, as

drugs that are fairly optimal toward wild type may not be

toward mutants [142].

The ‘‘true’’ test of charge optimization as a design

strategy, however, is through predictions of chemical

modifications to increase affinity that are subsequently

validated experimentally. Charge optimization has pro-

duced these successes. Because the optimality of a ligand

charge distribution is relative only to isosteric (i.e., shape-

preserving) analogues with identical charge centers, the

alterations tend to be relatively shape-preserving. For

example, charge optimization revealed that a carboxylate

group in a transition state analogue of Bacillus subtilis

chorismate mutase was too negative for optimal binding,

and so it was hypothesized that replacing this group with an

essentially isosteric nitro group would increase the affinity

[144]. This hypothesis was experimentally tested and val-

idated, with the designed alteration leading to the most

potent inhibitor of Bacillus subtilis chorismate mutase then

known, binding *3 times more tightly than the original

inhibitor [11]. Similarly, a fairly isosteric threonine to

valine substitution was predicted in the design of peptides

to bind HIV-1 protease more strongly than natural sub-

strates [145]. This prediction was validated through explicit

modeling of the substitution and ultimately by experiment,
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Fig. 2 Schematic showing the physical meaning of the ligand

desolvation penalty (A), receptor desolvation penalty (B), and

screened Coulombic interaction (C). In the thermodynamic cycle

used to go from the unbound to the bound state, both partners are

brought together to form the bound state and their charges are allowed

to interact with solvent but not with each other, leading to a

‘‘fictitious’’ intermediate state in which each partner is ‘‘desolvated’’

by the low-dielectric cavity in the shape of its binding partner, but is

unable to interact with the partner’s charges (resulting in a

desolvation penalty = A ? B). From the fictitious intermediate state,

the interaction between the binding partners is now turned on,

resulting in the bound state, thus completing the cycle. In practice, the

fictitious intermediate state is represented by two separate states,

depicted above, providing separate values for A and B, and the bound

state is reached by charging up the other binding partner in each case

(providing C in either case). The total electrostatic component of the

binding free energy is A ? B ? C

+ + + -

G

ΔG

ΔG

ΔG

Optimal

q

Fig. 3 Qualitative schematic showing the physical basis for the

optimal charge distribution, using the one-dimensional case as an

example. Three potential ligands with increasing charge magnitude

are shown at left, with a receptor at right. Above each ligand, the

upper line represents the relative stabilization of the unbound state

due to desolvation effects (quadratic with respect to charge), and the

lower line represents the relative stabilization of the bound state due

to interaction (linear with respect to charge). The optimal binding free

energy represents the intermediate balance between these two factors.

Note that the binding free energies shown here exclude the constant

receptor desolvation penalty

Theor Chem Acc (2012) 131:1252 Page 7 of 24

123



which demonstrated a tenfold improvement in binding

affinity for the designed peptide over any substrates.

Experimental validation of predictions suggested by charge

optimization has helped to establish its potential as a design

strategy.

Charge optimization has also been used to suggest res-

idue substitutions in an antibody system [146] and protein-

based inhibitors of HIV-1 cell entry [147]. By providing

the electrostatic signature of the ‘‘ideal’’ molecule, charge

optimization allows for a somewhat tangible design goal.

Indeed, using a series of neuraminidase inhibitors, Arm-

strong et al. showed that inhibitors that more closely

resembled their optimal counterparts—both energetically

and in their charge distributions—tended to bind more

tightly to their targets [148]. Although this result was not a

prediction, but rather an analysis of an existing series, it

further demonstrates the utility of charge optimization as a

prediction and design strategy.

3.3 Challenges and open problems in electrostatic

charge optimization

3.3.1 The isostericity constraint

While charge optimization has been used to predict small

changes in existing molecules to increase binding affinity,

it has somewhat limited utility toward predicting more

substantial changes in existing molecules or toward de

novo design. Its limitations mainly stem from the

assumptions upon which it rests. Under linear response,

the electrostatic free energy is an analytical expression of

the charge distribution only if the shapes of the ligand and

complex and the locations of the charge centers are con-

stant. This idea has been exploited not only for charge

optimization but also for the rapid energetic evaluation of

isosteric (identically shaped) analogues in binding sites

[149]. However, if the dielectric boundary (i.e., the shapes

of the ligand, receptor, or complex) changes, the elements

of L and Cqr also change, as all potentials must be recal-

culated (see Fig. 4). Consequently, the optimal charge

distribution is optimal relative only to isosteric alternatives.

This is perhaps the biggest limitation of using charge

optimization for design, as few, if any, molecular altera-

tions are perfectly isosteric.

One solution is to use charge optimization as a first step

to reduce the design search space by identifying qualita-

tive electrostatic alterations that might lead to tighter

binding, thus eliminating alternatives. Chemical substi-

tutions with these qualitative features can then be

explicitly modeled using other methods. Armstrong et al.

[148] showed that in lead optimization, where shapes and

binding modes of compounds change along a series,

changes that altered charges to qualitatively reproduce

electrostatic optimality relative to a previous compound

tended to improve affinity.

In completely de novo design, charge optimization as

described above has more limited utility due to the fixed-

shape restriction, as the general molecular shape is far less

defined, if at all. However, charge optimization may be

used to ‘‘map out’’ general characteristics of an optimal

ligand. Sulea et al. [150] used a ‘‘probe-based’’ approach to

characterize binding surfaces of proteins to aid in the

design of optimal ligands. Specifically, small probes whose

shapes were complementary to the local receptor surface

were charge-optimized across the receptor surface, leading

to a visualization of location-specific ligand optimal char-

ges. The quantitative values achieved assume indepen-

dence of the probes and would vary were the probes

replaced with chemically realistic ligands, but the map

nevertheless provides a convenient, ligand-independent

visualization of qualitative ligand electrostatic properties to

achieve tight binding at particular interfacial locations.

Indeed, applying the probe-based approach to both trypsin

and the PDZ domain resulted in optimal ligand properties
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Fig. 4 Schematic depicting the isostericity constraint. Horizontal
arrows depict changes in charge values in the molecular species

involved, whose effect on free energy can be easily computed via an

analytical formula (e.g., Eq. 13 in the case of binding free energy)

assuming a one-time numerical pre-calculation of the relevant

matrices. Vertical arrows depict changes in molecular shape, whose

effect on free energy cannot be easily computed, as all matrix

elements must be numerically recalculated for any shape change,

even if the interacting point charges remain at the same absolute

locations
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that qualitatively matched experimentally known binders to

each, providing some validation of this method. Another

potential strategy for incorporating charge optimization in

de novo design, especially for binding sites that are defined

by a pocket or other spatial restriction, is to lay down a grid

of points to cover the binding site and perform charge

optimization on this grid. Then, one could design mole-

cules that superimpose favorably with the resulting optimal

grid charge distribution. This approach has yet to succeed,

mainly because binding energetics may be highly sensitive

to grid characteristics, and very different charge distribu-

tions could lead to nearly optimal energetics [M. Altman,

personal communication]. Grid-based approaches to cal-

culating potentials (rather than charges) have proven more

useful for the rapid evaluation of molecular fragments for

design and are discussed further below; nevertheless, suc-

cessfully addressing the isostericity constraint to enable

charge optimization to better tackle de novo design remains

an open problem.

Another assumption upon which traditionally applied

charge optimization rests is the rigid binding of the ligand.

Most ligands undergo some conformational change upon

binding, and so this assumption appears to be a substantial

limitation. When the original charge optimization theory is

applied to a flexible ligand, Coulombic contributions

between ligand charges do not cancel out between the

unbound and bound states, and the L matrix now accounts

for both the (rigid) desolvation of the bound-state confor-

mation and the screened, Coulombic ‘‘deformation’’ com-

ponent to go from the unbound to the bound conformation

(the latter component may be found using a cycle in which

the ligand is completely desolvated, deformed, and resol-

vated, with the deformation penalty calculated directly

with Coulomb’s Law). While the desolvation component is

never favorable for any charge distribution, the deforma-

tion component could be either favorable or unfavorable,

and therefore, the overall L matrix need not be positive

semidefinite. Hence, there need not exist a provable mini-

mum in an unconstrained optimization.

By using the method of Lagrange multipliers to impose

constraints on the total charge, Gilson [151] optimized the

charge distribution of XK263 toward HIV-1 protease to

‘‘saddle points’’ on the free energy surface, assuming dif-

ferent ligand conformations in the unbound and bound

states. While he found that ‘‘optimal’’ charge distributions

and energetics were highly specific to the unbound-state

geometry, the optimal charges obtained assuming rigid

binding still produced desirable energetics when applied to

the flexible systems. In other words, the optimal charge

distribution obtained via the rigid binding assumption—

while not strictly optimal in the flexible cases—appeared to

be robustly ‘‘good’’ to changing ligand conformations.

Therefore, while the rigid binding assumption may be

limiting, the insights provided via traditional charge opti-

mization may still be useful in systems that involve ligand

conformational change. He also found that optimizing

flexible ligands may produce charges that are optimized for

the ligand bound-state conformation rather than for binding

the target; the intramolecular Coulombic part of the ener-

getics appeared to dominate over desolvation and interac-

tion components, suggesting that a designed molecule with

the ‘‘optimal’’ charge distribution would preferentially

adopt the bound-state conformation over the proposed

unbound-state conformation. In such cases, the ‘‘optimal

binding free energy’’ is more an artifact of destabilizing the

proposed unbound-state conformation rather than opti-

mizing the ‘‘true’’ binding free energy. Recent promising

work has overcome some of these issues to produce a

charge optimization protocol that gives consistent results

when applied in cases of ligand conformational change

(Y. Shen, M.K. Gilson, and B. Tidor, unpublished data).

Nevertheless, the rigid binding assumption and isoste-

ricity constraints necessitate further study of the robustness

of the optimal charge distribution to small perturbations in

shape, conformation, or other properties. Such a rigorous

analysis has yet to be done systematically, although pre-

liminary efforts were conducted by using multiple inde-

pendently refined binding sites within a crystal structure

asymmetric unit [144], in which it was found that while

absolute optimal binding free energies were quite con-

formationally dependent, the improvement in binding free

energy upon optimization was fairly robust to conforma-

tion. Systematically optimizing a ligand charge distribution

to multiple conformations obtained from a MD simulation,

while it may be computationally costly, may lead to fun-

damental insights about which charge locations are most

sensitive to perturbations to their local environment.

3.3.2 Putting the results in context

The optimal charge distribution can depend strongly on

whether the entire molecule or a subset is being optimized.

Sims et al. [140] demonstrated this idea with a fragment of

a PKA inhibitor, PKI(5–24). When optimizing the entire

molecule, the optimal charges of certain residues were

predicted to worsen binding when other residues remained

at wild-type values. They noted that if one wishes to alter

parts of a molecule known in advance, one should optimize

only those parts, as optimal charges are optimal only in the

context of all other charges optimized.

Additionally, the optimal charge distribution should not

be interpreted alone for design purposes but should be

placed in context with the sensitivities of the binding free

energies to each charge’s value. An atom’s charge might be

quite far from its optimal value, but the binding free energy

might be very insensitive to its value, such that altering it
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will only minimally improve binding. Evaluating the

results of a charge optimization along with accurate mea-

sures of sensitivity can allow for the prediction of changes

to most greatly improve binding. Multiple strategies can be

used to quantify the sensitivity. When a charge distribution

is not optimal, the sensitivity of binding free energy to a

charge is simply the derivative of the quadratic energy

function with respect to it, which amounts to the potential

difference between bound and unbound states at that

charge location [151]. Such sensitivity analyses can be

useful without optimization, as a way to understand how

local perturbations of charge distributions can improve

affinity [152] or affect stability [153]. However, in ana-

lyzing an optimal charge distribution, the gradient of the

charge distribution upon (unconstrained) optimization is

zero, by definition. The sensitivities are therefore captured

by looking at convexity, or the ‘‘steepness’’ of the parab-

oloid in the various directions. Mathematically, indepen-

dent sensitivities are given by the eigenvalues and

corresponding eigenvectors of L, with the larger eigen-

values and their eigenvectors denoting directions in charge

space that have great impact on binding energetics. While

mathematically the most ‘‘exact’’ measure of global sen-

sitivity, the fully charge-coupled nature of the eigenvectors

makes interpretation for practical applications difficult. At

the other extreme, many have opted for an atom-by-atom

approximate sensitivity that is easily interpretable but only

valid assuming other charges remain at the globally opti-

mal charge distribution [138, 141, 142]. In this approxi-

mation, the sensitivity of the binding free energy to an

atom’s charge is proportional to the atom’s corresponding

diagonal element of L. Large diagonal values therefore

represent that an atom is very ‘‘important’’ for determining

the optimal binding free energy. This approximation

becomes exact if only one charge is being optimized, as in

the ‘‘probe-based’’ approach of Sulea noted earlier [150].

Here, sensitivity was found to depend highly on the con-

cavity of the molecular surface interacting with the probe

charge, and calculated sensitivity values for potential

ligands interacting with trypsin and the PDZ domain were

evaluated through comparison with experimental SAR

data. Finally, as useful compromises between fully coupled

and decoupled sensitivities, some have opted for metrics in

which the sensitivity of an entire group of atoms on a

molecule can be evaluated together [140], or when the

other charges are allowed to ‘‘re-optimize’’ after one

optimal charge changes by a charge unit [154]. In the latter

case, such coupled sensitivity analysis identified a chemical

moiety on celecoxib, an inhibitor of both COX2 and CAII,

whose potential change in charge distribution was pre-

dicted to greatly influence binding to CAII but not to

COX2; the authors validated this finding by comparing to

existing experimental SAR data.

3.3.3 Numerical challenges and computational efficiency

Most commonly, the LPBE is numerically solved to esti-

mate the potentials used to generate L and Cqr. Numerical

imprecision may cause the smallest positive eigenvalues of

L (corresponding to eigenmodes that have little impact on

the binding free energy) to become negative, which dras-

tically impact the optimization, as L is no longer positive

semidefinite due to numerical error. These artifacts can be

handled with ‘‘regularization’’ techniques such as singular

value decomposition. Additionally, instead of explicitly

constraining charge magnitudes, small positive eigenvalues

may also be removed via conditioning techniques to avoid

unreasonably large magnitudes along eigendirections

toward which the binding free energy is insensitive.

Finally, electrostatic charge optimization can be com-

putationally intensive, generally requiring 2n calculations

of the potential when the LPBE is used, where n is the

number of charge centers (or basis functions, more gener-

ally). Such costs can make optimization of multiple ligands

or large ligands prohibitively expensive, and it also pro-

hibits one from addressing the isostericity constraint by

evaluating optimal charge distributions of systematically

varied shapes. It also limits the size of the basis set used in

the optimization. The limitations of a ‘‘fixed’’ atom-cen-

tered point charge model in the general modeling of elec-

trostatic interactions have been noted [155, 156] with

advances such as explicit modeling of lone pairs [155] and

polarizable force fields (mentioned in Sect. 2) demon-

strating the push toward a more ‘‘complete’’ representation

of the charge distributions. With a fixed basis set (the

incorporation of polarizable charge distributions into

charge optimization theory is yet another potential future

goal), the size and nature of the basis set used in charge

optimization can greatly impact the obtained results [134].

It has been shown that in the limit of a complete basis and

other physical constraints, the optimal electrostatic binding

free energy is provably negative [135], while the computed

optimal binding free energies using atom-centered point

charges are often positive.

A more efficient charge optimization implementation

can therefore allow not only for more molecules to be

analyzed, but also for a given molecule to be studied in far

more depth. To that end, Bardhan et al. developed a

‘‘Reverse-Schur’’ approach [157] that mathematically

combines the optimization problem with the boundary-

element formulation for calculating potentials, such that

the optimization can be done as part of a single (large)

solution of a linear system. Through clever matrix regu-

larization techniques and preconditioning, the ‘‘co-optimi-

zation’’ was shown to be two orders of magnitude faster

than the traditional, ‘‘one-row-at-a-time’’ assembling of the

L matrix elements prior to the actual optimization.
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Nevertheless, while this approach is clearly promising,

additional speedups are certainly possible. It is worthwhile

future work to evaluate the robustness of optimal charge

distributions and their resulting energetics as a function of

approximate (linear) models used to calculate the matrix

elements. Robustness would require L matrix eigenvalue

and eigenvector correspondence between methods. If a

faster method can be shown to reproduce similar optimal

characteristics as one using the LPBE, it could be another

avenue by which the scope of problems addressed by

charge optimization could increase. For example, using the

GB method, L can be obtained by only two energetic

evaluations [104]. While obtaining the Born radii needed

for these energetic evaluations still scales as n, these

computations are generally fast, suggesting a promising

role for other approximate methods if they are shown to

perform similarly to LPBE-based analyses.

3.4 Electrostatic specificity optimization for design

In keeping with the notion that either specific or promis-

cuous binding might be a more important design goal than

affinity in certain cases, Kangas and Tidor extended the

electrostatic charge optimization framework to attain

optimal promiscuity (i.e., binding to multiple partners)

toward desired targets and specificity against undesired

targets [158]. Their framework was flexible to handle

general design goals; a ligand has a set of desired targets,

with each desired target potentially existing as multiple

states (e.g., conformations, titration states). A ligand also

has a set of undesired targets, or decoys. Here, the goal is to

optimize a ligand such that it will bind as well as possible

to at least one target state for a given target, while avoiding

all possible decoys. Mathematically, they defined an

objective function that uses Boltzmann-weighting of

energies toward alternatives and, in the case of one target

with multiple states, reduces to the free energy difference

between the best binding desired state and the best binding

decoy. Due to the Boltzmann weighting, the objective

function is no longer generally convex, although it may

become so in the zero temperature limit, under certain

cases. Nevertheless, global optimality—a hallmark of tra-

ditional affinity optimization—does not generally apply

here.

In the same work, Kangas and Tidor also introduced the

‘‘general specificity ligand’’—a ligand that is (provably)

optimally specific to its receptor when compared to all

other isosteric receptors (under the rigid binding and fixed

charge location assumptions). Such a design goal may be

desirable when actual decoys are unknown but one still

wishes to maximize specificity toward a receptor rather

than affinity. The specificity-optimized ligand provides an

interesting juxtaposition to the affinity-optimized ligand.

While the latter is a ligand that will bind more tightly to a

receptor than all other isosteric ligands, the former is a

ligand that will bind more tightly to a receptor than it will

to all other isosteric receptors. In the affinity case, the

‘‘competitors’’ are other ligands, while in the specificity

case, the ‘‘competitors’’ are the other receptors. The spec-

ificity-optimized ligand is thus the ligand for whom the

given receptor is optimized. One can write it in closed form

by simply switching the ligand and receptor charge distri-

butions in the expression for the affinity-optimized ligand,

such that the receptor is now optimized toward the ligand,

and then solving again for the ligand charge distribution:

qL;spec;opt ¼ �2C�1RqR ð15Þ

Interestingly, the ligand affinity-optimized and specificity-

optimized charge distributions are always different (unless

the receptor is completely uncharged), as it is impossible

for both ligand and receptor to be mutually optimal for one

another unless both are completely uncharged [134].

Electrostatic specificity optimization with known targets

and decoys has been applied to optimize pepstatin for

narrow specificity toward HIV-protease [159]; here, the

‘‘decoys’’ were other aspartyl proteases, pepsin and

cathepsin D. The optimally specific charge distribution

revealed that improvements in specificity could be

achieved in multiple ways—modifications that improved

binding to the target but worsened binding to the decoys,

modifications that improved binding to both, but more so to

the target, and modifications that worsened binding to both,

but more so to the decoys. The optimal charge distribution

was used to suggest specific (nonisosteric) chemical sub-

stitutions that were subsequently evaluated through

explicitly constructing the shape-altering mutation and re-

evaluating the new electrostatic properties through separate

LPBE calculations, in addition to computing nonpolar

components of the binding free energy. Additionally, HIV-

protease inhibitors were optimized for broad specificity

against a ‘‘panel’’ of HIV-1 protease mutants, and it was

found that many inhibitors were fairly close to their broad-

specificity optima, especially tipranavir, which experi-

mentally is least impacted by the resistance mutations

considered. Interestingly, when an inhibitor was optimized

for broad specificity against multiple conformational vari-

ants of the wild-type protease, the resulting charge distri-

bution was similar to the one optimized to bind broadly to

explicit mutants. This suggests that optimization toward a

wild-type ensemble may be a useful strategy to design

inhibitors with broad recognition profiles when actual

mutant targets are unknown.

In a different study, the HIV-1 reverse transcriptase

(RT) inhibitor rilpivirine was simultaneously optimized to

bind promiscuously to three variants of RT [142]. Here, the

(convex) objective function was the sum of binding
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affinities toward each variant, and the constraints, also

convex, guaranteed that binding toward each variant was

no worse than a threshold value above the affinity optimum

for that variant. The resulting optimal ligand was far more

hydrophobic than the original, likely because the individual

targets required qualitatively different optimal charge dis-

tributions, and hydrophobicity represented the best

‘‘compromise.’’

The idea that an optimally promiscuous ligand tends to

be hydrophobic is in line with anecdotal and experimental

evidence that hydrophobic ligands tend to be more broadly

recognizing, as are smaller ligands [160]. These ideas and

other physical determinants of specificity and promiscuity

were systematically explored by extending the theory of

the general specificity ligand [161]. As the electrostatic

free energy of binding is quadratic in receptor charges

(assuming isostericity and linear response), the promiscuity

of a ligand in this contrived case can be thought of as the

‘‘width’’ of this paraboloid, that is, the volume of receptor

charge space that resides near the minimum point of the

paraboloid. Shallow paraboloids represent promiscuous

ligands, as many receptors will bind the ligand with similar

binding free energies, while steep ones represent more

specific ligands. Assumptions about isostericity, rigid

binding, and other physical constraints were relaxed in turn

from the contrived system in order to probe their effects on

specificity. For example, it was found that hydrophobic

ligands are more promiscuous because they are not as

sensitive to shape differences as charged ligands, and their

potential binding partners lie toward the center of biolog-

ical ‘‘charge space,’’ so there are more partners whose

electrostatic properties are potentially complementary.

Electrostatic charge optimization has proven useful for

gaining fundamental insights into the electrostatic deter-

minants of molecular recognition, for analyzing specific

systems, and for guiding design. Many studies are validated

by experimental observations, either done prior to the

analyses, or, in true design applications, afterward. Nev-

ertheless, there are several challenges and open problems

whose study can further increase its potential utility.

4 Combinatorial design using a continuum

electrostatic framework

4.1 Overview: the need for pairwise decomposability

and the return of the isostericity constraint

Here, I discuss the use of continuum solvent methods

within a combinatorial design framework (the incorpora-

tion of various solvent models into other design strate-

gies such as docking is addressed in reviews elsewhere

[162–164]). Combinatorial approaches have been most

commonly applied to protein design but have also been

applied in the design of small molecules. Combinatorial

design for proteins and small molecules is shown sche-

matically in Fig. 5. The designed molecule consists of a

‘‘fixed’’ portion—often the protein backbone or a molec-

ular scaffold used in a combinatorial synthetic scheme—

and n variable parts—side chains or R groups. The design

problem reduces to identifying which R groups are placed

at each position in order to optimize some property (sta-

bility or binding energy, for example). As proteins natu-

rally consist of a chemically invariable backbone and

variable side chains, the combinatorial design strategies

work particularly well here, although of course, in reality,

the backbone is not rigid. Various strategies have been

developed to generate or to account for multiple backbone

conformations during the design [165–171]. Assuming a

fixed region and n positions at which p possibilities are

considered (p counts not only unique chemical moieties but

also conformational variants of individual moieties), the

size of the molecular and conformational space is pn. As an

example, to design a small 25-amino-acid peptide allowing

an average of 10 conformations for each of the 20 amino

acids, p = 200 and n = 25, for a total of 20025 * 1057

possibilities. In drug design applications, the number of

positions is generally less, but the number of options at

each position is generally much higher, leading again to a

large search space. Such problems necessitate efficient

algorithms to determine ‘‘good’’ or, more desirably, glob-

ally optimal solutions. Methods include dead-end-elimi-

nation [172–175], A* [176], and integer- and mixed-integer

programming formulations [177–179] as well as stochastic

methods, such as the ones used by Baker et al. [180]. We

will not discuss them here except to state that often (and

especially in the case of the global optimization), they rely

on the expression for binding or folding free energy being

pairwise decomposable in the molecular moieties being

designed. In other words, efficient combinatorial optimi-

zation requires that the energy being optimized be

expressed as follows:

E ¼ E0 þ
X

i

EðirÞ þ
X

i

X

j [ i

Eðir; jsÞ ð16Þ

Here, E0 is the fixed portion of the energy, the single sum is

a sum over positions of ‘‘self-energies’’ E(ir), where each

term depends only on the individual option r chosen at a

given position i, and the double sum is over pairs of

positions, such that each term depends on the options

chosen at a pair of positions and likely represents an

interaction energy between the pair.

The algorithmic requirement for pairwise decompos-

ability of the energy function is a primary challenge to

incorporating many of the continuum electrostatic models

into the combinatorial design process [181–185]. With the
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exception of methods that assume a constant shape for the

dielectric cavity encompassing the designed species, such

as the spherical-cavity-based Tanford–Kirkwood methods

[186, 187], Poisson equation–based methods are funda-

mentally nonpairwise decomposable. The reaction field

generated by any charge within a molecule depends on the

shape of the entire molecule, so calculating self- and pair-

energies would require knowing the target molecular

shape, which is unknown unless all R groups allowed at

any given position were isosteric. This is the same premise

that limits the utility of charge optimization to isosteric

analogues. In other words, the use of continuum models in

combinatorial design is challenged greatly by the isoste-

ricity constraint.

4.2 Electrostatic models within the pairwise-

decomposable framework

Combinatorial design presents a general challenge in which

the most efficient algorithms limit the functional form of

the objective function. One can either globally optimize an

‘‘approximate’’ energy function, or one can very coarsely

sample the enormous space using a more accurate energy

function. One can either accurately score or sample, but not

both. Throughout the years, various approaches have been

taken to model solvent and other electrostatic effects within

a combinatorial framework, many of which have been

reviewed previously [69, 185] but will also be mentioned

here. One approach is to use more empirical models that

capture effects of solvent without necessarily motivating

them entirely through physics-based formalisms, and rep-

resenting them by pairwise additive functions. A histori-

cally used functional form for solvent screening of

interactions that may not account for desolvation effects

uses Coulomb’s Law to model interactions between solute

charges, but scales it by a distance-dependent dielectric

‘‘constant’’ in the denominator to account for solvent

screening:

Gelec ¼
q1q2

4pe0reðrÞ ð17Þ

The most common form of e(r) results in the electrostatic

energy dropping off quadratically as a function of distance

rather than linearly [188], but it can take on other pairwise

functional forms [189, 190]. Ignoring or crudely modeling

desolvation results in unrealistic designed molecules that

have buried polar and hydrogen-bonding groups making no

favorable interactions in the bound state. To work around

this issue, scoring functions are often in place to ensure the

satisfaction of hydrogen-bonding groups in the desired

state, using donor and acceptor angles, distance, or func-

tions based on experimental data to quantify ‘‘satisfaction’’

[191, 192]. Other, more parameterized empirical methods

involve assuming the hydration energy of each atom is

proportional to its exposed surface area (which can also be

approximated in a pairwise-decomposable way [193–195]),

with the proportionality constants determined by fitting to

experimental data [196–201]; such models were still found

to bury more polar groups relative to GB-based models

[183], although with improved parameterization they per-

form reasonably well in protein design [202]. Still other

models estimate desolvation by ‘‘excluded volume’’ rather

than surface area [203]. Wisz and Hellinga developed a

pairwise-decomposable empirical model that used varying

dielectric constants between pairs of charges and in

accounting for the desolvation of individual charges [204].

Cerutti et al. developed a pairwise-decomposable scheme

based on approximations applied at various distance

Fig. 5 Simplified schematic showing sample combinatorial frame-

works in protein design (left) and drug design (right) toward a target

(shown in gray). The black lines on the designed molecules represent

‘‘fixed’’ portions—in the example shown on the left, the protein

backbone is held fixed, and at right, the benzene ‘‘scaffold’’ is fixed.

The question marks indicate unknown positions at which multiple

possibilities (unique chemical moieties and/or their varied conforma-

tions) may be considered, leading to a combinatorially large number

of possible designs
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regimes, some of which involved parameters fit to exten-

sive data [205, 206]. In early years, empirical accounting

for solvation has allowed for multiple design applications

[194, 207], many of which were predictions that were

subsequently experimentally validated [208–210]. In recent

years, such solvation models have allowed for highly var-

ied design applications that are far too numerous to list

here, so the reader is referred to recent application-focused

reviews [211–215]. Nevertheless, it has been found that the

more accurate treatment of long-range electrostatics and

polar interactions with solvent can be important in accurate

structure prediction [180], thus suggesting the necessity of

more quantitative prediction of solvent effects for robust

design.

Marshall et al. provided an advance in the application of

continuum models toward combinatorial design [216].

They developed pairwise-decomposable LPBE-based

approximations for the desolvation and screened Coulom-

bic interaction energies between components in protein

design. They showed that certain one-body approximations

were fairly accurate, such as assuming the desolvation of

the backbone by all side chains upon folding was equal to

the sum of the desolvations caused by each individual side

chain in the absence of all others. For accurately approxi-

mating the desolvation of a side chain, however, it was

necessary to consider the effect of not only the backbone

but also other side chains as well. For computing side chain

desolvation and screened interaction energies for a given

side chain, a two-body framework was used, which added

the contribution caused by ‘‘perturbing’’ the dielectric

boundary to include every other side chain, one at a time.

While this method showed reasonable accuracy in test

cases, it systematically underestimated side chain desolv-

ation and interaction energies, as it always assumed a

smaller low-dielectric region than the designed protein

would encompass. Parameterization was used to improve

agreement initially. In later work [217], their method was

improved at no additional computational cost by assuming

a ‘‘generic side chain’’ of three connected spheres at each

of the nonexplicitly modeled side chains for each pairwise

term, to better approximate the shape and size of the ulti-

mately designed protein cavity.

In addition to pairwise-decomposable LPBE-based

methods, pairwise-decomposable generalized Born-based

models have also been developed (note that many GB

methods are pairwise at the atomic level, as Born radii are

often calculated as a function involving sums over pairs of

atoms, but they are not necessarily pairwise decomposable,

due to the functional form of the energies). Pokala et al.

[195] use ‘‘pseudoatoms,’’ similar to the ‘‘generic side

chains’’ above, to approximate the shape of the unknown

side chains at remaining protein positions. Another model

[218] results from the introduction of residue Born radii

rather than the more traditional atomic Born radii. Inter-

action energies are defined as a fitted function of pairwise

products of residue Born radii, where the fitting parameters

depend only on the two residues in question. This method

was recently applied to the computational redesign of

asparaginyl-tRNA synthetase to bind aspartyl adenylate

[219], although the designs did not show experimental

activity. As another approach, the Sheffield solvation

model [220] uses an alternative ansatz that somewhat

resembles the Still equation, in which force-field atomic

radii replace effective Born radii, and local and global

shape features are captured in an average way using two

parameters fit to PBE-acquired solvation energies. Because

radii no longer explicitly depend on all atoms, the func-

tional form is pairwise decomposable in a manner suited

for protein design, although the model has thus far been

designed for the analysis of small molecules. Nevertheless,

pairwise-decomposable methods that are rooted in more

traditional continuum electrostatic approaches may provide

a promising balance between physically based accuracy

and efficiency in combinatorial design in future

applications.

In small molecule design, assuming the isostericity of

designed molecules may be reasonable in certain cases,

allowing one to more accurately approximate the solvation

energy as pairwise additive. One may assume isostericity if

the binding pocket shape is well defined and encompasses

the designed molecule. In such a case, no water molecules

likely enter the binding pocket in the bound state, such that

the entire binding cavity, along with the receptor, can be

modeled as a low dielectric in the bound state. Assuming a

fairly tight cavity, this approximation is robust to changes

in ligand shape when modeling the bound state. One turns

the bound-state energy into a pairwise additive function by

laying down a very fine grid over the binding site and pre-

calculating desolvation and interaction potentials—essen-

tially analogous to a (very laborious) L matrix and Cqr

vector calculation described in the context of charge opti-

mization. After this set of calculations, however, the

bound-state self and pairwise electrostatic energy of any

functional group or pair of groups can be quickly estimated

by extrapolating the relevant charges out onto the grid and

performing the relevant matrix multiplication. Again, this

technique exploits the idea that Poisson-based electrostat-

ics are pairwise additive for the isosteric case. The issue

arises in the modeling of the unbound state. To avoid

computing separate potentials for each individual ligand,

one must assume that the unbound shape of the ligand is

still the ‘‘entire’’ binding cavity. This approximation is not

robust to molecular shape and thus is the major weakness

of such a model. Nevertheless, the method was found to

work quite well in separating known binders from non-

binders in an engineering charged binding site [221] and in
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designing novel HIV-1 protease inhibitors [222], when

used in conjunction with hierarchical energy functions,

described below; the latter design also required constraints

enforcing the satisfaction of hydrogen-bonding groups.

Hierarchical strategies allow for the integration of con-

tinuum electrostatic models into the design process without

directly coupling them to the scoring function used in the

optimization. In such a strategy, one initially uses a more

approximate energy function that is compatible with pair-

wise additive-based combinatorial optimization schemes.

These schemes can efficiently determine the global opti-

mum and enumerate all solutions within an energetic

threshold of the global minimum. This ‘‘best subset’’ of

structures found via the approximate energy function are

then re-evaluated with a more accurate energy function or

model that often includes continuum electrostatics.

Assuming that there is reasonable correlation between the

pairwise additive model and the continuum electrostatic

one, one can have statistical confidence that the global

energy minimum according to the more accurate method

would be captured when enumerating the best n kcal/mol

of the more approximate method. A framework has been

developed that in part quantifies the statistical likelihood of

capturing the global minimum of the more accurate energy

function based on the value n of enumeration conducted at

the initial stage [223]. Hierarchical energy functions have

been applied to numerous designs, integrated with either

docking [224–226] or combinatorial design [10, 222, 227]

methodologies.

Finally, one must accept that the ‘‘benchmark’’ LPBE

model, often used as a standard for accuracy, is itself an

approximation and therefore may lead to erroneous pre-

diction in design applications. In a critical study [228],

Jaramillo et al. found that an LPBE-based model, along

with multiple other continuum models, tended to favor the

burial of polar or charged groups, which can lead to designs

that are intuitively not physically realizable. Additionally,

Morozov et al. found that empirical-based hydrogen-bond

terms lead to better separation of native proteins from

decoys than purely electrostatic models, and they identified

other weaknesses of a purely Poisson-based approach

[229]. Such findings suggest that even an LBPE-based

approach that was perfectly compatible with algorithmic

methods would not necessarily lead to robust design. With

the limitations of current physics-based models, it may

remain necessary to incorporate empirical-based con-

straints or aspects of the scoring function. Additionally,

continuum models cannot capture effects of structurally

ordered, discrete water molecules; such waters often play a

role in stability or mediate interactions between binding

partners [230–233]. In addition to modeling bulk solvent

with a continuum model, it may be important to include

discrete water molecules as part of the design. Various

approaches to include discrete water molecules within

combinatorial design exist, including using rotamers that

are ‘‘pre-solvated’’ with discrete water molecules [234],

considering a water molecule as a ‘‘position’’ within the

overall design [10], and allowing waters to be placed at

multiple positions around designed ligand [235].

4.3 Combinatorial design for specificity

and promiscuity

Continuum electrostatic models have also been incorpo-

rated into more complicated designs in which the speci-

ficity or promiscuity was explicitly desired. Rather than

thoroughly describe applications, I focus on methodology

and problem formulation. First, one may incorporate

specificity explicitly into the objective function, although it

must remain pairwise decomposable in order to be com-

patible with many combinatorial optimization algorithms.

For designing specificity over known decoys, one could

minimize the difference between desired and undesired

states, although naively optimizing this difference may

result in an unrealistic conformation of the undesired states

that would ‘‘conformationally relax’’ in reality to be far

more stable. Therefore, one must allow for many possible

conformations of the undesired states and either implicitly

or explicitly incorporate an optimization of the undesired

state conformations into the ultimate ‘‘fitness function’’

being optimized [236, 237]. Another strategy is to deter-

mine the best candidates for the desired state and select

members from that subset that have the desired properties

toward decoys through separate calculations or analyses.

This approach, along with hierarchical energy functions

ultimately using a LPBE framework, was used in the

combinatorial, simultaneous design of calmodulin and

target peptide mutants that specifically recognize each

other over their wild-type variants [227]. Another appli-

cation of negative design is the creation of proteins that

prefer the monomeric state over aggregation. In protein

design applications, surface positions are often poorly

predicted, as models generally predict little energetic dif-

ference between placing apolar and polar residues on the

surface. To prevent designs that may aggregate, pairwise-

decomposable knowledge-based potentials that reflect the

solvent exposures of each amino acid in native proteins can

be incorporated [238]. Along those lines, it is important to

note that in cases where a protein is being designed to bind

tightly to a partner, such a design must also ensure that the

protein fold is stable, either implicitly or explicitly creating

a negative design problem in which the unfolded states are

competitors. Modeling the unfolded state is indeed chal-

lenging, and electrostatics have been shown to affect the

energetics and conformational biases of unfolded-state

populations [239–242]. Finally, there are successful
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designs incorporating continuum or empirical implicit

solvent models in which increased specificity of the

designed state over others was achieved simply by

increasing affinity toward the desired states without

explicitly considering competitors [243, 244]. Indeed, it

has been argued that physical characteristics that optimize

affinity to a desired target are unlikely to do so toward

competitors to the same extent; however, if competitors are

structurally similar, explicit negative design could be

expedient [245], and there are certainly cases where

explicit consideration of competing states is necessary,

including the design of specifically interacting coiled coils

[246–248] and homo- vs. hetero-dimer interactions [249].

Overall, due to the larger computational expense required

when considering multiple states, there is still room for

improvement in the incorporation of some of the more

traditional continuum models directly into the negative

design framework, as most successful applications have

employed more empirical solvation and electrostatic

models.

Combinatorial design of promiscuous binders or folders

requires a different approach. Statistical-mechanical-based

objective functions using Boltzmann weights allow for the

most generality in design, but they are not pairwise

decomposable and have limited utility in deterministic

optimization, although they may be used in stochastic

optimization [250]. Instead, one can minimize a linear sum

of energies, although such a sum may not guarantee that

each individual state has the desired level of favorability.

In integer-programming-based formulations of combina-

torial optimization, hard constraints can be applied to

ensure that all designed energies are better than a certain

threshold. Such a framework was developed for the com-

binatorial design of optimally small drug cocktails to col-

lectively bind tightly to an ensemble of targets [251]. The

method designs one molecule to bind toward a set of tar-

gets if such a molecule exists, and if not, it designs the

smallest number of molecules that would. Like all globally

optimal methods described here, it relies on pairwise

decomposability of energies and, without isostericity, pre-

sents challenges to the incorporation of continuum elec-

trostatic models.

Finally, the specificity or promiscuity of a designed

molecule can be enforced through system-specific criteria,

independently of the model used for electrostatics. For

example, it has been proposed that HIV-1 protease inhib-

itors should be designed to fit within the region encom-

passed by its natural substrates such that target mutations

that weaken drug binding will also weaken substrate

binding, resulting in a less-fit virus [252, 253]. Therefore,

one strategy for designing promiscuous drug molecules in

such a system is to constrain groups to lie within the

‘‘substrate envelope.’’ This strategy was successfully used

in the combinatorial design of HIV-1 protease inhibitors

using the substrate envelope as an isostericity constraint,

thus enabling the use of an LPBE-based design framework

[222]. Another strategy is to focus on those interactions

that are maintained between the designed molecule and

‘‘constant’’ features of all potential binding partners, such

as backbone moieties in the case of a mutating protein

[254]. In existing protein–protein interactions, it was found

that promiscuity could be achieved by a similar mecha-

nism, whereby a small number of key ‘‘hotspot’’ residues

may be optimized to maintain adequate promiscuity toward

multiple partners, suggesting a shared mechanism of

interaction toward all partners [255]. However, the same

study also identified another natural mechanism of protein–

protein promiscuity, in which different residues are used

for each partner (perhaps due to structural diversity of the

partners), with the overall interface representing a ‘‘com-

promise’’ between affinity toward each partner and overall

promiscuity. These findings were supported by another re-

design study in which the promiscuous protein calmodulin

was found to have both ‘‘affinity’’ residues, which appeared

to be optimized for all targets, and less-optimized ‘‘speci-

ficity’’-determining residues that varied when the protein

was designed for interaction with only one partner [256].

These studies suggest that knowing the structural similar-

ities of intended targets can focus the design toward taking

advantage of common interaction elements, if they exist

[243], reducing the search space and potentially allowing

for more computationally expensive electrostatic models to

be used in the design process.

5 Concluding remarks

Continuum electrostatic models have many strengths when

used to design biomolecular systems. First, unlike many

other implicit models, they often account for both solvent

screening and desolvation effects in a physically based

way; this can allow for a more insightful breakdown of

energetics when interpreting results. Additionally, short-

comings can often be attributed to physical, model-based

assumptions rather than poor parameterization or ineffec-

tive scoring functions, leading to more robust improvement

strategies and a more widely applicable model overall.

Secondly, while continuum models are not as accurate in

theory as a well-converged explicit solvent simulation, they

are more computationally efficient, making them particu-

larly suited for molecular design applications. As discussed

in detail, a major challenge in incorporating continuum

electrostatics into the design of molecules is the depen-

dence of electrostatic solvation free energies on the entire

shape of the molecule (the ‘‘isostericity’’ constraint).

Nevertheless, great strides have been made in such
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incorporation due to accurate approximation schemes,

simplifying assumptions, and hierarchical models. Future

progress may arise from a fundamental rethinking of the

relationship between the algorithmic and scoring compo-

nents of the optimization in such a way that more flexible

energetic expressions can be efficiently optimized. With

designs pushing the forefront of both the physical models

and the algorithmic components, a creative and integrated

expertise of both computer science and physical science

will be crucial in developing such a paradigm shift.
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